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ABSTRACT

The potential applicability of multiple-channel coherence estimation in situations where one channel contains
a noise-free signal replica (as in active radar) or a high-SNR reference signal (as in passive coherent radar)
has been proposed in recent work. Invariance of the distribution of M -channel coherence estimate statistics,
including recently derived variants optimized for detection of signals having known rank, to the presence of a
strong signal on one channel provided all channels are independent and the other M − 1 channels contain only
noise enables the desired use of these statistics without altering detection thresholds designed to provide desired
false-alarm probabilities. Traditionally, multiple-channel detection using coherence estimates has assumed that
time series data from all channels are aggregated at a fusion center. Mitigation of this requirement to demand
global aggregation of only scalar statistics that can be computed locally by sharing of data between pairs of
nodes has been explored, and the use of maximum-entropy methods to provide surrogate statistics for pairs of
nodes that are not in direct communication within a network has been proposed for traditional passive detection
problems. This paper examines the applicability of this idea in the presence of a strong reference channel with
particular attention to ascertaining relationships between network topology and detection performance.
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1. INTRODUCTION

Recent and continuing advances in networking technologies have precipitated new interest in multistatic and
so-called multiple-input, multiple-output (MIMO) radar architectures. This paper is concerned with situations
in which data collected in a network of M ≥ 2 spatially distributed sensors is to be exploited in the detection and
localization of objects in a scene. In each processing epoch, the scene is illuminated by a single transmitter that
emits a known waveform. The sensors receive direct path signal energy as well as energy scattered from objects
in the scene, and time-shifted and Doppler-shifted replicates of the transmitted signal are to be detected in the
collected data. A similar situation occurs in passive coherent radar, the scene is illuminated by a transmitter
of opportunity and the direct-path signal plays the role of the transmitted signal replicate in processing.1 This
signal is often strong and may also be possible to de-noise by decoding its message content and then re-creating
a close replica of the transmitted signal for use in extracting returns from the scatterers, which are generally
much weaker.

With this motivation, Section 2 begins by considering the problem of detecting a known signal in several
channels of noisy data under the assumption that all the data are available, together with the known signal, in one
place (i.e., a “fusion center”) for processing. A generalized likelihood ratio test (GLRT) is derived and compared
to a multiple-channel detector based on generalized coherence (GC) estimation.2,3 Section 3 examines detection
performance in incomplete networks where surrogate statistics for channels that are not in direct communication
are provided by maximum-entropy methods. Detection performance for a detector based on GC estimation is
compared to a detector based on the GLRT for various SNR values on the channels that are not in direct connect
with the transmitter. These results are discussed in Section 4.
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2. DETECTION WITH FULLY AGGREGATED DATA

The detection problem described in Section 1 is formulated mathematically as follows. Suppose a suitable
sampling rate and integration interval have been chosen and the sampled transmitted signal is represented as a
deterministic vector s ∈ CN . It will be assumed, as is normally true in practice, that N � M , where M is the
number of sensors. The sampled sensor data, which have each been appropriately compensated for relative time
delay and Doppler shift to account for a putative scatterer position and motion, are also represented by complex
N -vectors x1, . . . ,xM . The null hypothesis is defined as

H0 : xk = wk, k = 1, . . . ,M (1)

where the random vectors wk are independent complex, zero-mean, white Gaussian noise; i.e., wk ∼ CN [0, σ2I]
with 0 the zero vector in CN and I the N ×N identity matrix. The alternative hypothesis is

H1 : xk = αks + wk, k = 1, . . . ,M

where each αk is an unknown complex gain.

When the transmitted signal s and all the data xk, k = 1, . . . ,M are available in a common location for
processing, several standard tests are available for discriminating between H0 and H1. The following subsection
develops the generalized likelihood ratio test for this situation. Subsequently, a test based on the generalized
coherence estimate is described. GC-based detectors are most often associated with passive detection; e.g.,
ascertaining the presence of a common but unknown signal in multiple noisy channels of sensor data. The idea of
using GC-based detection in active settings by treating the transmitted signal as one channel (with infinite SNR)
was broached in 19974 and recently developed more fully.5 This section of the paper closes with a comparison
of detection performance between these two approaches based on simulations and a discussion of the results.

2.1 Multi-channel GLRT

With all data available in a single location for processing, it is possible to aggregate them into a single complex
NM -vector X defined by

XT = [xT
1 · · · xT

M ]T

Under H0,

X =

 w1

...
wM


and its probability density function is

p(X|H0) =
1

πNMσ2NM
exp

{
− 1

σ2
X†X

}
=
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πNMσ2NM
exp
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M∑
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kxk

}
where † denotes hermitian transpose. Under H1,

X =

 α1s + w1

...
αMs + wM


and its probability density function is

p(X|H1) =
1

πNMσ2NM
exp

{
− 1

σ2

M∑
k=1

(xk − αks)
†(xk − αks)

}
(2)

Hence the log-likelihood ratio is

`(X) = log
p(X|H1)

p(X|H0)
=

1

σ2

∑
k

(αks
†xk + αkx

†
ks− |αk|2||s||2) (3)
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where αk denotes the complex conjugate of αk and ||s|| is the norm of the vector s.

The parameter σ2 (the noise variance) is assumed known, so the signal-to-noise ratios (SNRs) on the channels
are controlled by the unknown gain parameters α1, . . . , αM . To calculate the generalized likelihood ratio (GLR),
it is necessary to estimate these unknown parameters. From (2), the log-likelihood function for the αk has the
form

C − 1

σ2

∑
k

(x†
kxk − αks

†xk − αkx
†
ks + |αk|2||s||2),

which is maximized by minimizing

∑
k

[x†
kxk − αks

†xk − αkx
†
ks + |αk|2||s||2] = ||s||2

∑
k

[(
αk −

s†xk

||s||2

)(
αk −

s†xk

||s||2

)
− x†

kxk −
s†xkx

†
ksk

||s||2

]

The maximum-likelihood (ML) estimate of αk is thus

α̂k =
s†xk

||s||2

Substituting these ML estimates for the into the log-likelihood ratio (3) gives the log GLR as

1

σ2

M∑
k=1

(
s†xkx

†
ks
)

=
1

σ2

∑
k

|s†xk|2

so the GLRT may be written as → H1 = {
∑
|s†xk|2 > T} where T is a threshold.

2.2 Active detection with generalized coherence

The GC estimate for M ≥ 2 data channels x1, . . . ,xM is defined as2,3

γ̂2(x1, . . . ,xM ) = 1− detG(x1, . . . ,xM )

||x1||2 · · · ||xM ||2

where

G(x1, . . . ,xM ) =


〈x1,x1〉 〈x1,x2〉 · · · 〈x1,xM 〉
〈x2,x1〉 〈x2,x2〉 · · · 〈x2,xM 〉

...
. . .

...
〈xM ,x1〉 〈xM ,x2〉 · · · 〈xM ,xM 〉


is the M×M Gram matrix whose entries are the inner products 〈xi,xj〉 = x†

jxi. Although comparison of the GC
estimate to a threshold actually discriminates between a diagonal covariance matrix and an arbitrary non-diagonal
covariance matrix,6 this test is often used to ascertain the presence of a common but unknown signal on several
noisy channels.3 The distribution of γ̂2 under H0 is known,2,3 allowing detection thresholds corresponding to
desired false alarm probabilities to be determined analytically. Invariance results for the distribution of the Gram
matrix determinant under H0,4,7, 8 and indeed for any function of the eigenvalues of the Gram matrix determinant
under H0,5 show that these thresholds remain valid if one of the M channels has arbitrary distribution provided
the other M − 1 channels are distributed according to the H0 model (1) and all M channels are independent.
Thus, detection thresholds determined for the H0 model (1) can still be used if one channel consists of a noiseless
replica of the transmitted signal as long as the other channels contain only zero-mean white Gaussian noise and
all channels are independent.

Based on this observation, an alternative to the GLRT derived in Section 2.1 is

→ H1 = {γ̂2(s,x1, . . . ,xM ) > T}

This detector was initially proposed in 19974 and was recently shown to give the same performance as a matched
filter detector having the same invariance properties in the case M = 1.5
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Figure 1: ROC curves for GLRT (red dots) and GC (blue crosses) detectors using fully aggregated data from
three receivers. Receivers A, B, and C all have SNR of -27dB.

2.3 Detector comparison with fully aggregated data

Although the GLRT has no optimality guarantees, it is generally accepted to be a sound test for this application.
The GC-based method is not designed for this application, and it is not expected to perform as well as the GLRT
when all sensor data are available at the fusion center. In Section 3, however, the GC approach is shown to offer
implementation advantages in distributed radar networks that are not completely connected.

Figure 1 shows receiver operating characteristic (ROC) curves for the GLRT and GC-based detectors using
fully aggregated data from M = 3 receivers. The signal is a complex sinusoid, the complex data vectors are
of length N = 2048, and all three receiver channels have SNR of -27 dB. As anticipated, the GLRT provides
superior performance to that of the MC detector in this situation.

3. DETECTION IN AN INCOMPLETELY CONNECTED NETWORK

Computing either the GLRT or GC estimate γ̂2(s,x1, . . . ,xM ) depends on the availability of the inner products
〈xk, s〉, k = 1, . . . ,M , between the transmitted signal s and the receiver data from each of the M receivers.
The GC estimate also incorporates inner products 〈xi,xj〉, i 6= j, between the data at every pair of distinct
receivers. Consider the network depicted in Figure 2(a). In this diagram, the circle represents the transmitter
and each square a receiver. Each pair of elements connected by an edge in this network graph are assumed to be
in direct communication, and consequently able to form the inner product of their data locally. Only these scalar
values are assumed to be communicated to the fusion center. Compared to an architecture that accumulates
all the raw data at the fusion center, this scheme substantially reduces the communication bandwidth between
the network and the fusion center by performing data reduction locally between pairs nodes that are directly
connected to each other in the network. So, in the network of Figure 2(a), both the GLRT and the MSC detector
can be implemented at the fusion center. For the network configuration in Figure 2(b), the transmitted signal is
shared only with Receiver C. With this configuration, the fusion center does not receive all the data necessary
to implement either test. The largest GLRT it can perform only uses sensor data from Receiver C. The GC
estimate cannot be computed because the inner products 〈s,xA〉 and 〈s,xB〉 are missing.

The following subsection describes an approach for completing the Gram matrix and performing an approx-
imate GC test when the network is incompletely connected. Simulation results are presented that compare the
performance of the largest GLRT enabled by the network topology with this approximate GC test.
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Figure 2: Two networks, each with three receiver nodes (black squares) and one transmitter node (red circle).
(a) The network is completely connected; i.e., every node shares data directly with every other node. (b) An
incompletely connected network in which all three receivers share data directly, but only Receiver C shares data
directly with the transmitter and hence has access to the transmitted sequence.
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Figure 3: Two additional incompletely connected networks used for detector performance evaluation. (a) A
network with three receivers (black squares) and one transmitter node (red circle). All three receivers are share
direct communication links, but only receivers A and C communicate directly with the transmitter. (b) A
network with two receivers and one transmitter. Receiver A communicates directly with the transmitter and
with Receiver B, but Receiver B does not communicate directly with the transmitter.

3.1 Maximum-entropy surrogation in GC-based detection

When the network is not completely connected, as in the case depicted in Figure 2(b), the fusion center cannot
form the Gram matrix G(s,x1, . . . ,xM ) because the inner product values corresponding to missing edges in
the network graph are not available. A method for forming an approximate GC estimate in this situation was
recently introduced in the context of passive detection.9 This approach uses the principle of maximum entropy10

to introduce surrogate values for the missing inner products.

Briefly, the method assumes that there is a complex random variable xk associated with each network node,
modeling data samples collected at that node. Collected samples at node k are hence realizations of xk and
can be used to estimated the mean and variance of xk in standard ways. The ability to communicate between
nodes i and j linked by an edge permits estimation of the covariance cov(xi, xj). For a complete network, it
is thus possible to estimate the full M ×M covariance matrix C of the variables x1, . . . , xM . Assuming the xk
all have mean zero, if N independent samples of xk are collected at node k for each k and are assimilated into
complex N -vectors x1, . . . ,xM of sample values, then the standard estimator Ĉ of C is proportional to the Gram
matrix G(x1, . . . ,xM ) used in the GC estimate. The GC detector can thus be viewed as a test on the estimated
covariance matrix of the variates x1, . . . , xM . If each xk is further assumed to be normalized to unit variance,
using the true variance in place of an estimate on the main diagonal gives a test matrix of the form

G

(
x1

||x1||
, . . . ,

xM

||xM ||

)
The maximum-entropy method holds that missing values in C should be surrogated in such a way as to in-

troduce no new assumptions about the nature of the random variables or of the network. The joint distribution
of the random variables x1, . . . , xM that best describes current knowledge (i.e., the covariance estimates for all
pairs of directly connected nodes) with no further assumptions is the maximum entropy distribution constrained
by the available data. The problem of finding the maximum-entropy completion of a covariance matrix has been
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studied in prior literature, where it is noted that the covariance matrix of this maximum-entropy distribution
will have the property that its inverse will has zeros in positions corresponding to the missing covariance val-
ues.12 This observation gives a direct means for calculating the needed surrogate values in small networks. The
necessary surrogate values for the small networks considered in this paper may be calculated directly in this
manner. Finding k surrogate values in this way becomes prohibitively cumbersome for M > 5. Fortunately, such
maximum-entropy covariance matrix completion problems fall into a class of determinant maximization problems
(entropy in this setting is log det Ĉ) that can be efficiently solved by convex programming techniques.11,12

3.2 Detection performance in incompletely connected networks

Figures 4 and 5 show ROC curves for the same sinusoid in Gaussian noise problem described in Section 2.3.
Figure 4 corresponds to Figure 2(b), an incompletely connected network in which only Receiver C shares data
directly with the transmitter. The GC estimate is calculated using surrogated values obtained with the maximum
entropy method to for the inner products between the transmitted signal and the Receiver A data and between
the transmitted signal and Receiver B data. Since only Receiver C has access to the transmitted signal, the
GLRT is calculated using only data from Receiver C. The presence of the common signal s in noise on Receivers
A and B allows the GC detector to outperform the GLRT, even though neither of these receivers has direct
access to s from the transmitter. The bottom curve indicates that even quite weak signals on Receivers A and
B are sufficient to endow the GC detector with similar performance to the GLRT in this example.

Figure 5 corresponds to Figure 3(a), again an incompletely connected network in which Receiver B does not
communicate directly with the transmitter. In this configuration, Receiver A and Receiver B both have access
to s from the transmitter. So the GLRT is calculated using data from both Receiver A and Receiver B. The GC
estimate is calculated using a surrogated inner product value between s and the Receiver B data. In this case,
the performance of the GLRT and the GC detectors is approximately equal when all three receivers have the
same SNR. But a stronger signal on Receiver B elevates the performance of the GC detector above that of the
GLRT despite Receiver B’s lack of direct access to s from the transmitter.

Figure 4: ROC curves for detection of a 2048-component complex sinusoidal signal vector in white complex
Gaussian noise in a 4-node sensor network corresponding to Figure 2(b). The red line with dots represents the
GLRT and the curves denoted by the blue crosses represent the GC detector with surrogated values for the links
between the transmitter and Receiver A and between the transmitter and Receiver B. In all cases, Receiver C
has an SNR of -27 dB. The top, middle, and bottom GC curves represent SNRs of - 24 dB, -27 dB, and -33 dB,
respectively, on both Receiver A and Receiver B.

Proc. of SPIE Vol. 8746  87460V-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/19/2013 Terms of Use: http://spiedl.org/terms



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty
 o

f 
D

e
te

c
ti
o
n

Probability of False Alarm

 

 

GC

GLR

Figure 5: ROC curves for detection of a 2048-component complex sinusoidal signal vector in white complex
Gaussian noise in a 4-node sensor network corresponding to Figure 3(a). The red line with dots represents the
GLRT and the curves denoted by blue crosses represent the GC detector with surrogated values for the links
between the transmitter and Receiver B. In all cases, both Receiver A and Receiver C have SNRs of -27 dB. The
top, middle, and bottom GC curves represent SNRs of -24 dB, -27 dB, and -30 dB, respectively, on Receiver B.
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Figure 6: ROC curves for detection of a 2048-component complex sinusoidal signal vector in white complex
Gaussian noise in a three-node sensor network. Corresponding to Figure 3(b), the red curve with dots is from
the GLRT and the blue curve with crosses is from the GC detector computed using a surrogated value for a link
between the transmitter and receiver B. In all cases, Receiver A has an SNR of -27 dB. The top, middle, and
bottom GC curves represent SNRs of -24 dB, -27 dB, and -33 dB, respectively, on Receiver B.

Figure 6 shows an ROC curve for detection of a complex sinusoid in white complex Gaussian noise in a
three-node sensor network with one transmitter and two receivers. The vectors are of length N = 2048. The
GC estimate is calculated using surrogated value between the transmitter and Receiver B. Since Receiver B does
not have access to the transmitted sequence, as it does not share direct communication, the GLRT is calculated
using only data from Receiver A. .

4. DISCUSSION AND CONCLUSIONS

Motivated by the objective of localizing high-bandwidth communication requirements in a radar network, this
paper has investigated a multiple-receiver detection scheme that does not require aggregation of raw data at a
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fusion center. In this scheme, only scalar statistics computed locally from raw data shared between pairs of nodes
that are in direct communication in the network are transmitted to the fusion center. For incomplete networks,
a maximum-entropy method can be used to provide surrogate statistics for pairs of nodes that are not in direct
communication with each another.

Of particular interest in this investigation was the question of whether the presence of noisy replicas of the
transmitted signal on some receivers could be of value in detection, even when these receivers lack direct access to
the transmitted signal. Four different network topologies were considered and, in each case, a detector based on
the GC estimate was compared to a GLRT using data only from receivers having direct access to the transmitted
signal. The detector based on the GC estimate uses maximum entropy estimation to provide surrogate values
for nodes (transmitter or receiver) that are not in direct connection with each other.

When the network is completely connected, the GLRT unsurprisingly provides better performance. The per-
formance comparison was repeated for two incompletely connected three-receiver networks and one incompletely
connected two-receiver network. In all of these cases, the GC-based detector was able to outperform the cor-
responding GLRT by exploiting noisy information about the transmitted signal obtained from receivers lacking
direct access to the transmitted signal.

These experimental findings are quite limited, and only very small networks were examined. The results
show sufficient promise that a more comprehensive study, including both theoretical and empirical performance
evaluation and involving larger networks, appears warranted.
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