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Abstract—We propose an algorithm for the classification of
structural damage based on the use of the continuous hidden
Markov modeling (HMM) technique. Our approach employs
HMMs to model time-frequency damage features extracted
from structural data using the matching pursuit decomposition
algorithm. We investigate modeling with continuous observation-
density HMMs and discuss the trade-offs involved as compared
to the discrete HMM case. A variational Bayesian method is
employed to automatically estimate the HMM state number and
adapt the classifier for real-time use. We present results that
classify structural and material (fatigue) damage in a bolted-
joint structure.

I. INTRODUCTION

The detection and classification of damage in complex
materials and structures is an important problem encountered
in the development of structural health monitoring (SHM) sys-
tems. Some recent techniques for damage monitoring include
Lamb wave methods [1], wavelet transforms [2], impedance-
based approaches [3], statistical pattern recognition using
outliers [4], artificial neural networks [5], and time-frequency
(TF) analysis [6]. While deterministic methods work well in
controlled situations, statistical approaches tend to be more
robust to the uncertainties inherent in the modeling of the
wave-physics and the data acquisition process. A successful
SHM scheme is more likely to result from the combination of
deterministic and statistical methods.
In this paper, we present an algorithm for the classification

of structural and material damage based on TF feature ex-
traction and continuous hidden Markov models (HMMs) [7].
TF damage features extracted from structural data using the
matching pursuit decomposition (MPD) [8] have been shown
to resolve damage classes [6]. HMMs are attractive owing
to their rich mathematical structure and their success in real-
world applications [7], [9]. They can capture the statistics
of the underlying damage wave-physics well and lead to a
reliable and effective SHM system. Our approach is based
on first extracting TF damage features from structural data
using the MPD and then using the HMMs to probabilistically
model these damage features. Experimentally collected data
is used to learn the model parameters. Once built, the HMMs
are integrated very efficiently into a Bayesian framework for
damage classification.
The discrete HMM was first introduced in [10] for damage

classification. While it performs well, the discrete HMM is

not the most natural model to use because the damage fea-
tures are continuous. Importantly, its performance is affected
adversely by the information loss associated with quantization.
In addition, in [10], the number of HMM states is estimated
empirically by inspection of the TF features of the data.
Thus, we address these issues by (a) employing continuous
HMMs to model the MPD extracted damage features, and
(b) considering a variational Bayesian method [11], [12] to
automatically estimate the number of HMM states and adapt
the classifier for real-time use. The utility of the proposed
classifier is demonstrated by application to the detection of
fatigue-induced structural and material damage in a bolted
joint.

II. ANALYTICAL FRAMEWORK
A. Matching Pursuit Decomposition
The MPD decomposes signals in terms of basis functions

drawn from a redundant dictionary [8]. The dictionary consists
of highly localized Gabor atoms that are TF shifted and scaled
versions of a basic atom. The kth dictionary element is given
by

gk(t) = e−κ2
k

(t−τk)2 cos (2πfkt) , (1)

where τk is the time-shift, fk is the frequency-shift, and
κk is the scaling parameter. Each Gabor atom gk(t) is thus
characterized by the set {τk, fk, κk}. The Gaussian-windowed
harmonics have advantages such as good TF localization prop-
erties and computational benefits derived from the availability
of closed-form analytical expressions. Additional information
on the use of the MPD for SHM can be found in [6].

B. Hidden Markov Models
The HMM [7] is a probabilistic model used for mod-

eling sequential data. For a length-T observation sequence
y = {y1, . . . , yT }, the HMM defines a probability distribu-
tion over y by invoking a sequence of unobserved (hidden)
discrete states x = {x1, . . . , xT }. The model imposes (a)
Markov dynamics on the sequence of hidden states, and (b)
independence of the observations yn from all other variables
given xn. Suppose that the number of distinct states is N ,
with the state variables xn assuming values from the alphabet
{1, . . . , N}. The model is then parameterized by the N × 1
initial state distribution vector π whose ith element is the
probability p(x1 = i), the N × N state-transition matrix
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A whose (i, j)th element is p(xn+1 = j|xn = i), and the
state-dependent observation density B whose jth element is
bj(yn) = p(yn|xn = j). The model parameters are denoted
by θ = {π, A, B}.
If the observations yn are discrete and restricted to the

alphabet V = {v1, . . . , vK}, then B reduces to a N×K matrix
whose (j, k)th element is bjk = p(yn = vk|xn = j) and the
model is known as a discrete HMM. In a continuous HMM,
the observations are continuous and B is often modeled using
a Gaussian mixture model (GMM) with M components:

bj(yn) =

M∑
m=1

cjm N (yn, μjm, Σjm), (2)

where N represents the Gaussian distribution, and cjm, μjm,
and Σjm are the coefficients, mean, and covariance matrices,
respectively, of the mth mixture component.
Given a ‘training’ observation sequence y, and an N -

state HMM assumption λN , one first computes a maximum-
likelihood estimate of the parameters θ:

θML = arg max
θ

log p(y|θ, λN ) (3)

using the Baum-Welch algorithm [7], a special case of the
expectation-maximization (EM) algorithm [13] which itera-
tively maximizes the likelihood of the training data. At the
nth iteration,

θ
(n+1) = arg max

θ

∑
x

p(x|y, θ(n), λN ) log p(x,y|θ, λN )

(4)
where the sum is over all possible state sequences. The
algorithm is guaranteed to converge to a local maximum of
the likelihood function [12].
The predictive likelihood of a ‘test’ observation sequence

y
′ can then be computed as

p(y′|θML, λN ) =
∑
x

p(x,y′|θML, λN )

=
∑
x

πx1

T−1∏
n=1

axnxn+1

T∏
n=1

bxn
(yn), (5)

where a and b are elements of the matrices A and B. For
information on how to reduce the complexity of the algorithm,
see [7].

C. Model Selection and Variational Bayesian Learning
Maximum-likelihood (ML) learning as in (3) provides no

information about the uncertainty of the parameters estimated.
Moreover, it does not account for model complexity and
is susceptible to over-fitting the data [12]. The likelihood
function is unbounded and it is possible to increase the like-
lihood of the data by using models of increasing complexity.
Using ML learning with unnecessarily complex models is
therefore dangerous, and has the disadvantages of increased
data requirement and computational burden.
Conventional methods for dealing with this problem include

limiting the number of model parameters (such as the number

of HMM states N ), constraining the form and information-
flow in the model (for example, by constraining the con-
nectivity of the state transition matrix A), using maximum
a posteriori (MAP) [12] learning with regularizing priors
on the parameters, and employing cross-validation. These
techniques work well in some applications, but often they
become cumbersome and/or computationally expensive.
In the Bayesian setting, the task of model selection com-

prises calculating the posterior distribution over a set of models
H given some data y and a priori knowledge p(H). From
Bayes’ rule, the posterior is

p(H|y) =
p(y|H) p(H)

p(y)
∝ p(y|H) p(H). (6)

Assuming a uniform prior p(H), the key quantity for Bayesian
model selection is the evidence for model H:

p(y|H) =

∫
p(y|θ,H) p(θ|H) dθ. (7)

Models are ranked by evaluating the evidence, which embodies
the principle of Occam’s razor since it automatically penalizes
complex models with more parameters [12]. The Bayesian
integration in (7) above is, however, not easy to compute
directly.
This problem is solved using variational Bayesian (VB)

learning [11], [12], where we lower bound the evidence
p(y|H) using an approximating probability distribution
q(x, θ) as [11]

log p(y|H) = log

∫ ∑
x

q(x, θ)
p(x,y, θ|H)

q(x, θ)
dθ

≥

∫ ∑
x

q(x, θ) log
p(x,y|θ,H) p(θ|H)

q(x, θ)
dθ

≡ FH(q(x, θ)). (8)

For many models and approximating distributions, the varia-
tional objective function FH and its derivatives with respect to
the approximating distributions’ parameters can be evaluated.
Since

FH(q(x, θ)) =

∫ ∑
x

q(x, θ) log
p(y|H) p(x, θ|y,H)

q(x, θ)
dθ

= log p(y|H) −

∫ ∑
x

q(x, θ) log
q(x, θ)

p(x, θ|y,H)
dθ

= log p(y|H) − DKL [q(x, θ)||p(x, θ|y,H)] ,

where DKL denotes the Kullback-Leibler divergence [12]
which is always non-negative (DKL[p||q] ≥ 0, with equality
only if p = q), the lower bound is maximized (and achieves
equality) when q(x, θ) = p(x, θ|y,H).
Using the variational Bayesian EM (VBEM) algorithm [11],

the bound FH is iteratively maximized with respect to q(x, θ),
and convergence is guaranteed to a local maximum of FH.
The optimized variational posterior q(x, θ) simultaneously
yields an approximation for the true posterior p(x, θ|y,H).
In contrast to conventional ML learning where we attempt to
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infer a single set of parameters θ, VB learning optimizes a
whole ensemble over θ.
The relevant update equations, specialized to the case of

hidden Markov models, can be found in [11], [14], [15]. It is
important to note that the computational complexity of varia-
tional Bayesian learning is not very different from that of the
standard (maximum-likelihood) Baum-Welch algorithm [11],
[14].

III. HMM BASED DAMAGE CLASSIFICATION ALGORITHM

A. Time-Frequency Feature Extraction using MPD

The critical first step of a successful classification system
is the extraction of effective discriminatory features. In this
work, we employ the amplitude-time-frequency-scale features
{αk, τk, fk, κk} extracted by the MPD to encode the informa-
tion necessary for distinguishing signals from different damage
classes. Specifically, an L-iteration MPD is first applied to
each measured signal, resulting in a collection of L continuous
coefficients {αk, τk, fk, κk}k=0,...,L−1. These are then cast as
a sequence of 4-dimensional vectors of length T = L, and
are subsequently used as a vector observation sequence to be
statistically modeled for classification.

B. Continuous HMM Based Damage Classifier

The number of states N to use in the HMMs can be
estimated empirically by examination of the TF representation
of the data. Here we make use of the cross-term free TF
representation given in [8] that can be computed directly
from the signal MPD. We choose N using the number of
stationarities in the data. An example of a 3-state definition is
shown in Figure 1.
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Fig. 1. Example of a 3-state definition used in the HMM classifier.

The data from each damage class is modeled using an
HMM, with the available training data from each class used
to learn the parameters of the corresponding HMM. Once the
model parameters have been estimated, unknown test data is
classified based on its likelihood as computed by the HMM
associated with each damage class. Specifically, the classifier

assigns a given test observation sequence y
′ to damage class

k, given by
k = arg max

j
p(y′|θ

(j)
ML, λN ), (9)

where θ
(j)
ML denotes the parameters of the jth HMM (trained

on data from damage class j).

C. Variational Bayes for Estimation of HMM State Number
All other things being equal, the model complexity of the

HMM is governed by the number of states N . The number
of parameters to be estimated increases with N , and if the
complexity of the model is not limited by the amount of
data available, the result is overfitting. In this work, we use
variational Bayes to select an HMM of appropriate complex-
ity. Specifically, given data y, we employ the VB learning
algorithm discussed in Section II-C to compute the evidence
for the N -state HMM using H = λN in equation (7).
The appropriate number of states N∗ is then determined by

comparing the evidences for various N as

N∗ = argmax
N

p(y|λN ). (10)

VB learning provides an efficient framework for automatically
selecting a model of appropriate complexity from the data,
and helps avoid the overfitting problems encountered in con-
ventional ML learning.

IV. APPLICATION EXAMPLES
A. Experimental Setup and Data Collection
The data comprises cyclic fatigue loading tests conducted

on an Al 6061-T651 single-lap bolted joint sample. The
experimental setup used is shown in Figure 2. The lap is
0.125 inches thick, with a 5 mm notch machined in the top
lap. Nine piezoelectric sensors are mounted on the lap, one
is used as an actuator for transmitting a 130 kHz burst signal
and the remaining as receivers. Both structural and material
damage is induced (separately) in the joint by subjecting
it to a 20 Hz 90-900 kg tension-tension loading. Structural
damage is defined here in terms of the torque on the bolts, and
material damage based on the length of the crack initiated at
the notch in response to fatiguing. Data is collected for four
structural damage classes: bolt torque = 0%, 30%, 60%, and
100% (healthy), and eight material damage classes: number of
fatigue cycles = 0 (healthy), 130, 135, 140, 145, 155, 200, and
285 kilo-cycles, with 100 measurements taken for each case.

B. Choice of Model Parameters
The measured signals are first mean-centered, normalized,

and time-aligned. For each waveform, TF damage features are
extracted using L = 20 MPD iterations with a dictionary
composed of 5.8 million normalized time-frequency Gabor
atoms given in (1). This choice of truncation limit corresponds
to a residual signal energy of about 5%.
For modeling with the discrete HMM, the features are

quantized toK = 64, 128, and 256 symbols using the k-means
algorithm [12]. In the continuous HMMs, M = 6 components
are used with the Gaussian mixture models.
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Fig. 2. Setup for structural and material damage in a bolted joint.

Figure 3 shows an example plot of the log-evidence
log p(y|λN ) (actually, the lower bound computed using VB
learning) as a function of the number of HMM states N , for
the case of structural damage with bolt at 60% torque. We
see that the evidence is greatest for N = 2 to 5 state HMMs,
and decreases as N is increased further (with increasing model
complexity). In all the simulations of this paper, we use HMMs
with N = 3 states. Note that this choice agrees well with
the state definition shown in Figure 1, which was determined
empirically.
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Fig. 3. Log-evidence log p(y|λN ) as a function of number of HMM states
N , for the case of structural damage with bolt at 60% torque.

Of the 100 waveforms available for each damage class, 40
waveforms are used for training the HMMs, 30 are used for
validation (estimating M for the continuous HMM), and 30
for testing classifier performance.

C. Classification Results
The performance of the classifier is quantified here using

confusion matrices. The (i, j)th element of a confusion matrix
indicates the probability that data from class i is classified

as being from class j. In all cases, the correct classification
probabilities (the diagonal entries of the confusion matrices)
are highlighted with bold font.
Tables I and II show the confusion matrices for structural

damage classification using a discrete HMM with K = 256
symbols and a continuous HMM, respectively. While the K =
256-symbol discrete HMM classifier yields good classification
results, the performance of the continuous HMM classifier is
better (the average correct classification rate is higher).
Table III shows the average correct classification rates for

structural damage classification obtained from the discrete
HMM (as a function of number of symbols used K) and
the continuous HMM. We see that the performance of the
discrete HMM classifier improves as K increases. This is
expected, because the information loss associated with the
quantization step is smaller for larger K . In addition, for
all these choices of K , the performance of the continuous
HMM classifier is superior to that of the discrete HMM
classifiers. This improvement in performance from the discrete
to the continuous HMM (and between discrete HMMs with
increasing K) comes with added computational cost.

0.8667 0 0.0667 0.0667
0 0.9667 0.0333 0
0 0.0333 0.9333 0.0333
0 0.0333 0 0.9667

TABLE I
STRUCTURAL DAMAGE CLASSIFICATION USING DISCRETE HMM

(K = 256 SYMBOLS).

0.9667 0 0.0333 0
0 1.0000 0 0
0 0 0.9333 0.0667
0 0 0.0667 0.9333

TABLE II
STRUCTURAL DAMAGE CLASSIFICATION USING CONTINUOUS HMM.

No. of symbols K 64 128 256 CHMM
Avg. correct classification rate 0.8167 0.8583 0.9333 0.9583

TABLE III
STRUCTURAL DAMAGE CLASSIFICATION RATES FROM DISCRETE HMM

(AS A FUNCTION OF K ) AND CONTINUOUS HMM (CHMM).

Tables IV and V show the confusion matrices for material
damage classification using a discrete HMM with K = 256
symbols and a continuous HMM, respectively. Table VI shows
the average correct classification rates for material damage
classification obtained from the discrete HMM (as a function
of number of symbols used K) and the continuous HMM.
Once again, we see good classification results from both
classifiers. And as before, the performance improves with K

for the discrete HMM; the continuous HMM yields the best
performance.
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0.83 0 0 0.07 0 0.10 0 0
0 0.87 0 0 0.03 0.03 0.03 0.03
0 0.07 0.77 0 0 0 0 0.17
0 0 0 1.00 0 0 0 0
0 0 0 0 0.97 0.03 0 0
0 0 0.03 0 0 0.93 0 0.03
0 0 0 0 0 0.03 0.97 0
0 0.03 0 0.03 0 0.07 0 0.87

TABLE IV
MATERIAL DAMAGE CLASSIFICATION USING DISCRETE HMM (K = 256

SYMBOLS).

1.00 0 0 0 0 0 0 0
0 0.93 0 0 0 0.07 0 0
0 0 0.97 0 0 0.03 0 0
0 0 0 0.97 0 0.03 0 0
0 0 0 0 0.97 0.03 0 0
0 0 0 0 0 1.00 0 0
0 0 0 0 0 0.03 0.97 0
0 0 0 0 0 0.07 0 0.93

TABLE V
MATERIAL DAMAGE CLASSIFICATION USING CONTINUOUS HMM.

V. CONCLUSION
We have presented an algorithm for the classification of

structural damage based on time-frequency feature extraction
and continuous hidden Markov models. Application to the
detection of fatigue-induced structural and material damage
in a bolted joint shows very good performance, and average
correct classification rates of near 90% are observed. The
performance of the discrete HMM classifier is a function of the
number of symbols used, with more symbols yielding more
accurate results. The performance of the continuous HMM
classifier is superior to that of the discrete HMM classifier.
The continuous HMM, however, is a more complex model

and has more parameters to be estimated. As a result, the
amount of data required for training the model can be greater.
In addition, the number of mixture components to use in
the Gaussian mixture models have to be determined using
techniques such as cross-validation. Moreover, learning and
inference in the continuous HMM is generally more compu-
tationally intensive than that for the discrete case.
A variational Bayesian learning algorithm was applied to

automatically select the number of states used in the HMM.
This choice is shown to correlate well with what one might
choose empirically by examination of the time-frequency
features of the data in question.
The HMM-based damage classification algorithm presented

here can be enhanced in several ways. Firstly, by using the
variational lower bound in place of the true evidence to guide
model selection, we assumed that the KL divergences between
the variational and exact posterior distributions over parame-
ters and hidden variables are constant between models; this is
not true in general. We are currently examining approaches to
estimate the KL divergence. Second, the variational Bayesian
learning yields not only a bound for the desired evidence
but also an optimized variational approximation to the true

No. of symbols K 64 128 256 CHMM
Avg. correct classification rate 0.7125 0.8030 0.9000 0.9667

TABLE VI
MATERIAL DAMAGE CLASSIFICATION RATES FROM DISCRETE HMM (AS A

FUNCTION OF K ) AND CONTINUOUS HMM.

posterior over the parameters. Although we use a (maximum-
likelihood) point estimate for the parameters, the approximate
posterior can be applied for improved inference. Finally, in the
results reported here, only data collected from one sensor was
utilized. By fusing the information gathered from all of the
multiple distributed sensors, the performance of the classifier
can be improved significantly.
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